ESSEX HUDSON GREENWAY | urban design
OPTIONS STUDIO | ARCH 463/4 | Summer 2022 | Darius Sollohub & Caitlin Charlet

STUDIO SCOPE

The Essex Hudson Greenway studio will provide urban design support for a planned bicycle and pedestrian linear park extending over eight miles in New Jersey’s Essex and Hudson Counties. The future park will connect Montclair to Jersey City and eventually the Hudson River; along the way passing through Glen Ridge, Bloomfield, Belleville, Newark, Kearny, and Secaucus. The new greenway will improve access to nature and create new recreational and transportation opportunities. Like the High Line in New York, it has the potential to transform its surrounding communities.

The studio will work in a coordinated manner with the entities leading the project: The New Jersey Department of Environmental Protection and the New Jersey Bike & Walk Coalition. Using their suggestions and that of other interested parties, the studio will expand upon designs already begun by Mathews Nielsen Landscape Architects, whose Framework Plan articulates opportunities for the greenway and the communities along its length, providing analysis of ecological, experiential, and planning aspects of the project. Building upon this process, the studio will design adjacent open spaces, access points, bridges, amenities, and future intersections with other linear parks.

The studio will follow a two-phase process: At the beginning of the semester, students will work in teams to first comprehend the greenway’s relationship to the regional bicycle infrastructure grid and then propose enhancements and extensions. During the semester’s second half, students will work individually to design specific aspects of this expanded scope. Throughout, students will interact with a variety of parties, project leaders, outside professionals, and community stakeholders to hone their designs. The outcomes will be presented upon completion of the studio to a range of interested parties.

ESSEX HUDSON GREENWAY, Image by Arterial

TRAVEL: Regular trips to various sections of the greenway.
BUILDINGS OF THE FUTURE = BUILDINGS THAT LAST
BUILDING BETTER MEANS BUILDING LESS

STUDIO PROPOSAL
The pandemic forced us to rethink our work and life arrangements and, as a result, left us with overwhelming vacancies of offices and retail spaces. In response, the design and development community rushed into hosting competitions, writing papers, and developing design proposals for adaptive re-use of those vacant buildings. However, lessons we have learned in that process have no bearing on how we develop new buildings. They are still being designed and built only for one specific use.

What happens when the new crisis comes? Be it another pandemic or an economic downturn. Are we trapped in the “build – demolish – build again” cycle? We keep sending millions of tons of construction debris to landfills and, at the same time, mining raw materials to support new construction. It is not sustainable and it does not have to be that way. Producing buildings that can be either adapted to a different use without major reconstruction or disassembled into reusable components must become the way we think about all new projects from now on.

The American Institute of Architects released a publication, “Buildings That Last: Design for Adaptability, Deconstruction, and Reuse”, intended to provide guidelines for architects interested in designing for longevity. The studio will use that publication together with the European Standard ISO 20887:2020 “Sustainability in buildings and civil engineering works — Design for disassembly and adaptability — Principles, requirements and guidance” as key guidelines for developing student projects.

There is no site. Students are invited to design a prototype for a high-rise office building, following one of the 2 scenarios:
1. Two stages of adaptive re-use, office – multifamily residential – office.
2. Complete or partial disassembly/deconstruction of the building.

Students will research design requirements for related building typologies, including structural systems, circulation, engineering systems, code requirements, and construction methods. Following that exploration, students will develop design strategies for either adaptation or deconstruction, or both.